
IMAGE NAVIGATION AND REGISTRATION PERFORMANCE ASSESSMENT

EVALUATION TOOLS FOR GOES-R ABI AND GLM

Scott Houchin, Brian Porter, Justin Graybill, Philip Slingerland

The Aerospace Corporation, 14301 Sullyfield Circle, Unit C, Chantilly, VA 20151-1622

ABSTRACT

The GOES-R Flight Project has developed an Image

Navigation and Registration (INR) Performance Assessment

Tool Set (IPATS) for measuring Advanced Baseline Imager

(ABI) and Geostationary Lightning Mapper (GLM) INR

performance metrics in the post-launch period for

performance evaluation and long term monitoring. IPATS

utilizes a modular algorithmic design to allow user selection

of data processing sequences optimized for generation of

each INR metric. This novel modular approach minimizes

duplication of common processing elements, thereby

maximizing code efficiency and speed. Fast processing is

essential given the large number of sub-image registrations

required to generate INR metrics for the many images

produced over a 24 hour evaluation period. This paper

describes the software design and implementation of IPATS

and provides preliminary test results.

Index Terms—Image registration, Image Navigation,

Software Design, Automation

1. INTRODUCTION

The Image Navigation and Registration (INR) Performance

Assessment Tool Set (IPATS) was developed to measure INR

performance metrics of the Advanced Baseline Imager (ABI)

and Geostationary Lightning Mapper (GLM), onboard

GOES-R, in both the post-launch period for performance

evaluation and for long term monitoring. IPATS utilizes a

modular algorithmic design to allow user selection of data

processing sequences optimized for generation of each INR

metric.

The evaluation tool component of the entire IPATS toolset

consists of two main software applications: The Image Pair

Selector and Evaluator (IPSE) and the Output Data Analysis

Tool (ODAT).

Given one or more ABI or GLM Background Images to

be evaluated, IPSE identifies other images against which each

newly received image should be evaluated. Those other

images can come from within that input image set, from

within a database of previously received ABI or GLM

Background images, or from within a database of truth

images derived from Landsat data. It then identifies

appropriate chips within the overlapping geographic region

of that image pair to evaluate. The navigation and registration

results for each individual evaluation region for each image

pair, in terms of correlation error and measurement

uncertainty, are then stored in either a SQLite3[3] or

PostgreSQL[4] database for further analysis. The prime focus

of IPSE is performing the core analysis on each individual

image pair at sufficient speed to keep up with data collection

(process a day’s data within a day) using limited computing

hardware. IPSE is a C++ command line application with both

standalone and client/server components. To perform some

of the image processing, IPSE uses the open source OpenCV

toolkit[2] to manage image data and perform many but not all

image processing operations.

ODAT, an analyst focused, graphical user interface-based

Python application[5], allows each analyst to query the

database generated by IPSE for specific portions of the

analyzed imagery (e.g., navigation error for all Band 2 images

collected on a specific day, or all frame-to-frame registration

error output for all Band 3 images collected over the previous

week). ODAT then allows the user to export raw analysis

results, generate additional statistics across multiple analysis

results, generate plots of the results, and rerun specific

evaluates through IPSE using debug modes or using alternate

evaluation parameters.

2. THE IMAGE PAIR SELECTOR AND

EVALUATOR OVERVIEW

The Image Pair Selector and Evaluator (IPSE) performs the

bulk of the scientific analysis in the IPATS toolset. Within

IPSE, data analysis is divided into three main components.

Image pair identification, evaluation location identification,

and then finally the actual scientific evaluation.

2.1. Image pair identification

First, for each specific analysis type (e.g., navigation, band-

to-band registration), IPSE examines metadata for the input

imagery and identifies which images are to be compared

against which other images. The rules for image pair

identification vary from evaluation to evaluation.

Navigation evaluation is performed on every single input

ABI and GLM Background image received. For the ABI

images, the input image is compared against a set of truth

chips, derived from Landsat data, and the image pair

https://ntrs.nasa.gov/search.jsp?R=20170007414 2020-05-09T22:46:35+00:00Z

identification step is skipped. For GLM Background image

navigation, each GLM image is compared with the single

previous and single next collected ABI image from a single

configurable band.

For band-to-band registration (BBR), IPSE identifies all

of the available images from a single collection, grouping

images into collections by the start time in the file name. The

specific pairs of bands that are to be compared is a

configurable parameter.

Frame-to-frame registration (FFR) pair identification is

performed by finding the previously collected matching ABI

image (same band, same satellite position, same type, etc.).

Swath-to-swath registration (SSR) pair identification is

the most complicated, because from an official requirements

perspective, swath-to-swath registration evaluation is

performed on specifically tasked collection. In order to

provide automation for SSR, IPSE looks for two Mesoscale

images from the same band and same satellite position, and

that were collected approximately 30 seconds apart. IPSE

then loads the geographic metadata from the image files in

order to determine the covered ground area in GOES-R fixed

grid angular coordinates. If the images overlap by

approximately one swath, then SSR evaluation is performed

on that image pair.

2.2. Evaluation location identification

Once an image pair is identified, it then identifies specific

chips of the whole image on which to perform the evaluation.

Given the computational cost of performing a cross-

correlation operation and the likelihood that navigation and

registration error varies across the image (particularly for the

large full-disk and continental US images), evaluation is

performed on a sequence of small chips extracted from the

images.

For ABI NAV, the database of Landsat truth images is

considered to be the locations on which the ABI image should

be evaluated. IPSE calculates the location and size of the

portion of the ABI image (in pixels) covered by the truth

image, taking into account any pixels needed in either image

to minimize edge effects and for padding. IPSE then treats the

truth image as if it was just another ABI image for the purpose

of the scientific evaluation, thus allowing all evaluation types

to be treated as the comparison of two images at one or more

locations. The list of Landsat chips is provided to IPSE in the

form of an SQLite3 database, or as a comma separated value

(CSV) file, which IPSE then imports into an in-memory

SQLite database at program startup.

For all other evaluation types, including GLM

Background image navigation, IPSE determines the area on

the ground covered by both images in the pair. It then

searches a database of predetermined locations that are

sufficiently inside the intersecting area and are flagged for the

specific evaluation type.

ABI L1b imagery is resampled to an angular fixed-grid

coordinate system; given a virtualized satellite position (e.g.,

over the equator at 89.5 W longitude, neighboring pixels in

either the X or Y direction have a fixed angular separation.

This is unfortunately not true for the GLM background

image, which is not resampled to a fixed grid; individual X

and Y coordinates are provided for every single pixel. To

minimize overhead, since image data is not loaded from any

image at this phase of processing, IPSE treats the GLM

background image as if it is an ABI full-disk image from the

perspective of ground coverage.

2.3. Scientific evaluation

The vast majority of the real work performed by IPSE is the

actual evaluation of an image pair at a single location. IPSE

is structured such that this work is performed by a single

function, regardless of evaluation type. This function does

assume that the input images are on a fixed grid, but it does

not require that the grid be the same for both input images; as

long as the resolution ratio is an integer, IPSE can compare

the images. This presents a challenge for the GLM

Background images, since they are not resampled to the fixed

grid; that resampling must be done inside IPSE. To

compensate, the C++ class model implements the GLM

image loader as a subclass of the ABI image loader. From the

perspective of the common evaluator function, all image data

is loaded on-demand, and only for specific pixel regions as

requested, based on the location of and size of the evaluation

region. This allows the GLM image loader to perform the

necessary resampling to a fixed-grid only for the portions of

the image that are covered by the identified evaluation

locations, saving significant processing time.

The details of the evaluation algorithm are fully covered

in [1]; in summary, IPSE determines the overlapping area in

the two images, aligns them on a common fixed grid, and then

expands the necessary region of each image a sufficient

amount to ensure that when interpolation is performed to

generate pixels of both images at a target evaluation

resolution, that interpolation is performed using only real

pixels. As shown in Figure 1, this processing results in the

two images being resampled to a common resolution.

Additional resampled padding pixels are extracted from the

higher resolution truth image; this allows for the lower

resolution image (the one under evaluation) to be moved

around inside the larger truth region to find the best

correlation.

Figure 1. IPSE resampling truth and evaluation to common

resolution

Once the two chips are extracted and resampled to a target

evaluation resolution, one of three correlators can be used to

calculate the error between the two images: A position-based

correlator, using the OpenCV matchTemplate function, a

correlator using normalized-mutual information, and an FFT-

based phase correlator. The initial raw correlation output can

then be refined by either centroid or parbolic fit methods.

That measured and refined error data is then output into the

IPSE evaluation results database.

3. IPSE EVALUATION RESULTS DATABASE

STRUCTURE AND CAPABILITIES

In order to minimize size and maximize creation speed of the

Image Pair Registration Record (IPRR) database, the

database is divided into several tables, linked together

through an ID column on each row in each table. This allows

information that is common across many rows (from

hundreds to millions of rows) to be stored only once in the

database, but be correctly linked to the record for each

individual location evaluated for a given pair of images.

Figure 2 shows the relationships between the key tables in

the IPRR database, using the Unifed Modeling Language

(UML). At a high level, a diamond-tipped line shows that a

row in the table at the diamond-end of the line has a reference

to a row in the table at the plain end of the line. The number

on the line indicates the multiplicity of that relationship. For

example, a Corr row points to two Chips, and can also point

to 0 or 1 Errors.

Figure 2. UML class diagram showing the key tables in the IPRR

database

Key tables in the database are:

 Rows in the Corr table each contain a single correlation

output in terms of both raw and refined registration error,

for a single location within a single pair of images, for a

single run. This table links back to other tables that

specify the configuration parameters, the images under

evaluation, and the chips extracted from those images.

 Rows in the ScienceConfig table each contain the

specific scientific parameters (e.g., the subpixel factor,

interpolation method and correlation method) used for a

given set of evaluations. This data is generated indirectly

from the command line and configuration parameters

specified by the user to ensure that if two users specify

the same configuration, either intentionally or

coincidentally, the resulting correlation output records

all link back to the same configuration. In addition, this

table allows for configurations to be named, simplifying

the process for an analyst to use a known configuration.

 Rows in the QFactor table specify the quality factors

used for the band pair of the images under evaluation to

determine whether the images were similar enough to

compare (e.g., to exclude a cloud covered image from

evaluation against a cloud free image)

 Rows in the Chip table each specify the pixel region

extracted from an image under evaluation, as well as the

center of the chip in fixed grid angular coordinates.

 Rows in the Image table each specify the filename and

key metadata extracted from a single image under

evaluation

 Rows in the Location table specify additional

information about the ground location of the chip.

 Rows in the Error table specify additional error

information, for either a correlation, chip or image. For

example, if correlation fails, a chip is too close to the

edge of an image, or if an image file is corrupt and cannot

be loaded, the error will be recorded.

 Rows in the Run table specify the time of execution and

information about the version of IPSE being used.

This structure of the IPRR database allows IPSE to generate

the necessary data for large volumes of individual evaluations

without inducing bloat on the database. For example, the

band-to-band evaluations for one day of ABI imagery could

result in millions of individual evaluations.

4. IPSE COMPUTATIONAL PERFORMANCE

In our current processing environment, IPSE can be run using

a PostgreSQL database, with the processing spread across 80

cores.

Using a library of simulated 2240 ABI L1b full disk image

files (140 sets of 16 bands, each image 1084810848 pixels),

IPSE is able to perform NAV evaluation on all images in

about 5 minutes, using 378 Landsat chips to determine the

evaluation locations. BBR evaluation on all 140 sets can be

completed in about 80 minutes, but we expect planned

improvements to drop that time down under 60 minutes. BBR

evaluation on that image set results in 6,498,053 attempted

evaluations, with 5,445,058 complete IPRR records

generated after outlier rejection. We do not have time figures

for FFR or SSR at this time, but expect FFR to be on the same

order of magnitude as NAV, and for SSR to require minimal

resources due to the highly restricted data sets due to manual

tasking of SSR pairs.

5. OUTPUT DATA ANALYSIS TOOL

While the IPRR database allows for IPSE to perform large

volumes of evaluations in small amounts of time, the IPRR

database does not lend itself for easy direct analysis. To aid

the end-user in evaluating the results and performing cross-

result comparisons, the IPATS tool set contains the Output

Data Analysis Tool (ODAT). ODAT was developed with two

goals in mind: to provide a standard interface to the IPATS

IPRRs, and to provide an easy-to-use graphical interface for

users who simply want to compute a set of stock statistics and

plots. ODAT has been developed in Python (version 2.7 or

higher). Python is becoming increasingly popular for data

analysis due to its powerful language constructs (it is a fully

object-oriented language), its increasingly refined data

analysis packages, and the fact that it is open source and free

[5][6]. In addition, Python is multi-platform, enabling easy

deployment to Windows, Linux, and Mac environments[5].

In order to keep the number of external Python packages to a

minimum, ODAT uses stock Python 2.7 modules such as

Tkinter for the graphical user interface (GUI) and the

SQLite3 connector for the database.8 The only required

external package is SciPy, and ODAT makes heavy use of the

SciPy sub-modules NumPy, Matplotlib, and Pandas for the

data manipulation and analysis portions of the code due to the

flexibility and performance these packages offer

[6][7][8][9][10].

Figure 3. ODAT Query IPRR screen

Figure 4. ODAT example refined East/West error vs. band plot

In addition to viewing and analyzing already generated

results. ODAT allows the analyst to reprocessing specific

images at specific locations in either debug modes or with

alternate scientific parameters. In the event of out of family

results, the analyst can then perform additional testing

without having to manually identify the images and locations,

and then manually run IPSE on those locations with altered

settings.

6.
7. CONCLUSION

The IPSE and ODAT software tools, part of the IPATS tool

set, provide a high performance, automated processing

mechanism for evaluating navigation and registration error

for GOES-R, along with easy to use tools for the analyst to

examine the results and generate additional statistics and

metrics. These tools are an essential part of the task to verify

registration and navigation performance of the GOES-R

instruments.

8. REFERENCES

[1] De Luccia, F., S. Houchin, B. Porter, J. Graybill, E. Haas, P.

Johnson, P. Isaacson, A. Reth, Image navigation and registration

performance assessment tool set for the GOES-R Advanced

Baseline Imager and Geostationary Lightning Mapper, Proc. SPIE

9881, Earth Observing Missions and Sensors: Development,

Implementation, and Characterization IV, 988119 (May 2, 2016);

doi: 10.1117/12.2229059

[2] Open Source Computer Vision (OpenCV), About OpenCV, 02

October 2014, http://opencv.org/ (04 February 2016)

[3] SQLite Consortium, About SQLite, SQLite, 2016,

https://www.sqlite.org/about.html (02 February 2016)

[4] PostgreSQL, PostgreSQL: The world’s most advanced open

source database, https://www.postgresql.org/about/, (2016)

[5] Python Software Foundation, Python Language Reference,

version 2.7, 2016, http://www.python.org (02 February 2016).

[6] McKinney, W., Python for Data Analysis: Data Wrangling with

Pandas, NumPy, and IPython, O’Reilly Media, (2012).

[7] Van der Walt, S., Colbert, C., and Varoquaux, G., The NumPy

Array: A Structure for Efficient Numerical Computation,

Computing in Science & Engineering, 13, 22-30 (2011).

[8] Hunter, D. J., Matplotlib: A 2D Graphics Environment,

Computing in Science & Engineering, 9, 90-95 (2007).

[9] McKinney, W., Data Structures for Statistical Computing in

Python, Proceedings of the 9th Python in Science Conference, 51-

56 (2010).

[10] Jones E., Oliphant E., Peterson P., et al., SciPy: Open Source

Scientific Tools for Python, 2001-, http://www.scipy.org/ (02

February 2016).

